نگاهی به ریاضیات پیشرفته/گشتی در دنیای هندسه/مقطع مخروطی
در ریاضیات، مقطع مخروطی (یا به سادگی مخروطی، گاهی اوقات منحنی درجه دوم نامیده می شود) منحنی است که به عنوان تقاطع سطح یک مخروط با یک صفحه به دست می آید. سه نوع مقطع مخروطی عبارتند از: هذلولی، سهمی و بیضی. دایره یک مورد خاص از بیضی است، اگرچه از نظر تاریخی گاهی اوقات آن را نوع چهارم می نامند. ریاضیدانان یونان باستان برش های مخروطی را مطالعه کردند که در حدود 200 سال قبل از میلاد با کار سیستماتیک آپولونیوس پرگا بر روی خواص آنها به اوج خود رسید.
معادلهٔ کلی[ویرایش]
معادلهٔ یک مقطع مخروطی بهصورت معادلهٔ درجه دو زیر برحسب بیان میشود:
دوران[ویرایش]
مقدمه دوران[ویرایش]
از دوران هر شکل دور یک محورش شکل جدیدی به وجود میآید.
مثلاً از دوران مستطیل حول یک محورش، استوانه به دست میآید.
مثلاً پارهخطی را حول خطی که بر آن عمود است دوران دهیم، یک دایره ایجاد میشود.
در مقاطع مخروطی[ویرایش]
در مقطع مخروطی ما یک صفحه مورب را در یک خط صاف چرخشی،کار دوران را انجام می دهیم،این کار به صورت رویه دورانی انجام می گردد و دو مخروط متقارن ایجاد می شود.
در مقاطع مخروطی دوران ها به این صورت است:
از دوران یک دایره حول قطر آن یک کره به وجود می آید.
از دوران یک بیضی حول یکی از قطر هایش یک کره گون به وجود می آید.
از دوران یک سهمی حول یکی از قطرهایش یک سهمی گون به وجود می آید
از دوران یک هذلولی حول یکی از قطرهایش ،یک هذلولی گون به وجود می آید.
نکته[ویرایش]
در دایره و بیضی،دوران آنها به صورت پیوسته است و فقط یک جسم هندسی را ایجاد می کنند.
در سهمی و هذلولی چندین سهمی گون و هذلولی گون وجود دارد که از این سهمی گون ها و هذلولی گوت ها، سهمی گون دورانی و هذلولی گوت دورانی می گوییم.
برش ها[ویرایش]
مخروطی را در نظر بگیرید. اگر برشی موازی قاعدهی آن روی آن ایجاد کنیم، سطح مقطع به وجود آمده یک دایره است. اگر این برش را به صورت مایل به طوریکه نه موازی قاعده و نه موازی مولد مخروط باشد، سطح مقطع ایجاد شده یک بیضی خواهد بود. اگر این برش موازی مولد مخروط باشد، سطح مقطع به وجود آمده سهمی نامیده میشود. و اگر این برش بر قاعده عمود شود یک هذلولی ایجاد میشود.
تعاریف مقاطع مخروطی[ویرایش]
دایره[ویرایش]
دایره یک منحنی مسطح و بسته و شامل نقاطی از صفحه است که فاصلهشان از نقطهٔ ثابتی واقع در آن صفحه مقداری ثابت باشد. نقطهٔ ثابت، مرکز دایره و مقدار ثابت، اندازهٔ شعاع دایره نامیده میشود. همچنین دایره را میتوان یک بیضی دانست که کانونهای آن بر همدیگر منطبقند (برونمرکزی آن صفر است)؛ ازینرو دایره یکی از مقاطع مخروطی است. مقطع مخروطی منحنیای است که در محل تقاطع یک صفحه با یک مخروط پدیدار میشود، و هنگامی که صفحه با مقطع مخروط موازی باشد منحنی حاصل دایره خواهد بود. دایره را همچنین میتوان به عنوان چندضلعی متساویالاضلاعی تعریف کرد که تعداد اضلاع آن به بینهایت میل میکند.
بیضی[ویرایش]
در هندسه، بیضی یک منحنی مسطح و بسته است که دو کانون دارد و حاصل جمع فاصلهٔ هر نقطه روی محیط آن با دو کانونش مقدار ثابتی است. شکل بیضی (مقدار کشیده بودنش) با مقدار برونمرکزی آن مشخص میشود. برونمرکزیِ بیضی عددی بین صفر و یک است و هر چه کوچکتر باشد کشیدگی بیضی کمتر است. اگر برونمرکزی بیضی صفر باشد، دو کانون آن روی هم میافتند و منحنی تبدیل به دایره (که حالت خاص بیضی است) میشود. بیضی را همچنین میتوان با عنوان «مقطع مخروطی بسته» تعریف کرد. مقطع مخروطی منحنیای است که در محل تقاطع یک صفحه با یک مخروط پدیدار میشود. گونههای دیگر مقاطع مخروطی (سهمی و هذلولی) بازند و کراندار نیستند.
سهمی[ویرایش]
سهمی مجموعه نقاطی از صفحه است که از یک خط و از یک نقطه هم فاصله هستند.سهمی خمی باز است که از برخورد مخروطی قائم با قاعدهٔ دایرهای و صفحهای حاصل میشود که با یکی از وترهای مخروط موازی باشد ولی با ارتفاع مخروط موازی نباشد. اگر این صفحه با قاعدهٔ مخروط موازی باشد حاصل دایره، اگر با ارتفاع مخروط موازی باشد حاصل هذلولی، و اگر با هیچیک از وترهای مخروط یا ارتفاع آن موازی نباشد حاصل بیضی خواهد بود.
هذلولی[ویرایش]
هُذلولی خمی باز است که از برخورد یک صفحه با سطح مخروطی، در حالتی که صفحه، موازی با محورِ سطحِ مخروطی باشد، پدید میآید. در صفحهٔ اقلیدسی و از نظر مکان هندسی، هذلولی مجموعهای از نقاط در یک صفحه است که تفاضل فاصلهٔ هر یک از آنها از دو نقطهٔ ثابت در صفحه (کانونها)، مقداری ثابت (دو برابر مقدار a در هذلولی) باشد؛ اگر نصف اندازهٔ طول و عرض هذلولی را a و b و نصف فاصلهٔ کانونی را c بنامیم، در هر هذلولی رابطهٔ c2 = a2 + b2 برقرار خواهد بود. هر هذلولی دو خط مجانب دارد که در مرکز هذلولی با هم برخورد میکنند.
ویژگی مقطع مخروطی در هندسه اقلیدسی[ویرایش]
مقاطع مخروطی در صفحه اقلیدسی دارای ویژگی های متمایز مختلفی هستند که بسیاری از آنها را می توان به عنوان تعاریف جایگزین استفاده کرد. یکی از این ویژگیها مخروطی غیر دایرهای را مجموعهای از نقاطی تعریف میکند که فواصل آنها تا یک نقطه خاص به نام کانون و یک خط خاص به نام جهات در یک نسبت ثابت است که خروج از مرکز نامیده میشود . نوع مخروط با مقدار خروج از مرکز تعیین می شود. در هندسه تحلیلی ، مخروطی ممکن است به عنوان یک منحنی جبری صفحه درجه 2 تعریف شود. یعنی به عنوان مجموعه نقاطی که مختصات آنها معادله درجه دوم را برآورده می کنددر دو متغیر که ممکن است به صورت ماتریسی نوشته شوند. این معادله امکان استنتاج و بیان جبری خواص هندسی مقاطع مخروطی را فراهم می کند.
در صفحه اقلیدسی، سه نوع بخش مخروطی کاملاً متفاوت به نظر می رسند، اما ویژگی های بسیاری دارند. با گسترش صفحه اقلیدسی تا شامل یک خط در بی نهایت، به دست آوردن یک صفحه نمایشی ، تفاوت ظاهری ناپدید می شود: شاخه های یک هذلولی در دو نقطه در بی نهایت به هم می رسند و آن را به یک منحنی بسته تبدیل می کنند. و دو انتهای یک سهمی به هم می رسند تا آن را به یک منحنی بسته مماس بر خط در بی نهایت تبدیل کنند. گسترش بیشتر، با گسترش مختصات واقعی برای پذیرش مختصات پیچیده ، ابزاری را برای مشاهده این یکسان سازی به صورت جبری فراهم می کند.
منابع[ویرایش]
ویکی پدیای فارسی
ویکی پدیای انگلیسی