راهنمای جامع فیزیک/نظریه اختلال
در مکانیک کوانتومی، نظریهٔ اختلال (به انگلیسی: Perturbation theory)، مجموعهای از طرحهای تقریبی است که مستقیماً مربوط به اختلال وابسته به ریاضی است که برای توصیف یک مجموعهٔ کوانتمی پیچیده بر حسب یک مجموعهٔ سادهتر بکار میرود. ایدهٔ ما این است که با یک سیستم ساده شروع نمائیم که در آن یک روش ریاضی شناخته شدهاست و افزودن هامیلتون، آشفته، نشان دهندهٔ اختلال ضعیف در سیستم خواهد بود. اگر اختلال زیاد نباشد، کمیتهای مختلف فیزیکی توأم با سیستم آشفته (برای مثال سطح انرژی و حالت انرژی)، طبق الزامات پیوستگی، به صورت اصطلاحات سیستم ساده تعریف میشوند. این اصطلاحات، اگرچه در مقایسه با مقدار کمیتها کوچک هستند، میتوانند با استفاده از روشهای تقربی مانند مجموعههای مجانب محاسبه شوند؛ بنابراین سیستم پیچیده را میتوان بر مبنای دانش سیستم سادهتر مورد مطالعه قرار داد.[۱]
محتویات
۱ کاربردهای نظریهٔ اختلال
۲ نظریهٔ اختلال مستقل از زمان
۲.۱ تصحیحات مرتبه دوم و بالاتر
۳ اصطلاحات مرتبه اول
۴ جستارهای وابسته
۵ منابع
کاربردهای نظریهٔ اختلال
نظریهٔ اختلال ابزار مناسبی برای توصیف سیستمهای کوانتومی است، زیرا یافتن روش دقیقی در معادلات شرودینگر در هامیلتونهایی با پیچیدگی متوسط دشوار است. حرکتهای هامیلتونی که ما برای آنها روش دقیقی داریم مانند اتم هیدروژن، نوسانگر هماهنگ کوانتوم و ذرات داخل جعبه، برای توصیف اغلب سیستمها بسیار ایدئال هستند. با استفاده از نظریهٔ اختلال، ما میتوانیم از روشهای شناخته شدهای از این هامیلتون ساده برای ارائهٔ روشهایی برای دامنهای از سیستمهای پیچیده استفاده نمائیم. برای مثال، با افزودن پتانسیل الکتریکی اختلالی به مدل مکانیکی کوانتوم اتم هیدروژن، میتوانیم تغییرات کوچک موجود در خطوط طیفی هیدروژن را که حاصل از وجود میدان الکتریکی (اثر استارک) است محاسبه نمائیم. این محاسبه تقریبی است، زیرا جمع پتانسیل کولن با پتانسیل خطی غیر ثابت میباشد، اگر زمان تونلزنی بسیار طولانی است. این امر به صورت بسط انرژی خطوط طیفی نشان داده شدهاست، چیزی که نظریهٔ اختلال نتوانست بهطور کامل آن را عملی نماید. مقادیر بدست آمده حاصل از نظریهٔ اختلال دقیق نمیباشند، ولی نتایج دقیقی را مانند پارامترهای بسط دهنده در اختیارمان قرار میدهند.
در تئوری الکترودینامیک کوانتوم که در آن تعامل فوتون الکترون به صورت آشفته میباشد، محاسبهٔ گشتاور مغناطیسی الکترون با ۱۱ اعشار سازگار خواهد بود. تحت برخی از شرایط، تئوری اختلال رویکرد نامعتبری محسوب میگردد. این امر زمانی بروز مینماید که ما نتوانیم سیستم را با اختلال تحمیلی اندک در سیستمهای ساده توصیف نمائیم. برای مثال در دینامیک رنگی کوانتومها، تعامل کولاک با گلون در سطوح کم انرژی آشفتگی ایجاد نمینماید، زیرا ثابتهای جفت (پارامترهای توسعهای) بسیار بزرگ میشوند. تئوری اختلال همچنین نمیتواند حالاتی را که به صورت آدیاباتیک از «مدل آزاد» به وجود آمدهاند را توصیف نماید، مانند حالات مرزی و پدیدههای جمعی مختلف مانند سالیتون. برای مثال، تصور نمائید که ما دارای سیستمی با ذرات آزاد هستیم که در آن یک تعامل جالبی وجود دارد. بسته به نوع تعامل این امر ممکن است موجب ایجاد مجموعه پدیدی از حالات انرژی مرتبط با گروهی از ذرات گردد که به یکدیگر متصل هستند. یک نمونه از این پدیده در فوق هدایت قراردادی مشاهده شدهاست که در آن جاذبهٔ فونون بین الکترونهای رسانا موجب تشکیل جفتهای الکترونی هسته میشود که جفتهای کوپر نامیده میشوند. حین مواجهه با چنین سیستمهایی اغلب یکی به نمای تقریبی دیگری تبدیل میشوند مانند متدهای تغییر و تقریب WKB. این امر بدین دلیل است که هیچگونه شباهتی از ذرات پیوسته در مدل آشفته و انرژی سولیتون وجود ندارد که عکس پارامترهای انبساطی میباشد. به هر حال اگر ما پدیدهٔ سولیتون را یکپارچه نمائیم، اصطلاحات غیر مختل در اینجا بسیار اندک خواهد بود. نظریهٔ اختلال تنها میتواند محصولهایی را مورد بررسی قرار دهد که رابطهٔ نزدیکی با محصولهای غیرآشفته دارند، حتی اگر محصولهای دیگری نیز وجود داشته باشد (که به عنوان پارامتر انبساطی است که به سمت صفر سوق مییابد). مسئلهٔ سیستمهای غیرآشفته تا حدودی با کامپیوترهای مدرن حل شد. بدست آوردن چندین روش غیر اختلالی عددی در برخی مسائل خاص عملی گردید که در آنها از متدهایی مانند نظریهٔ کاربردی چگالی استفاده مینمودند. این پیشرفتها در زمینهٔ شیمی کوانتوم بسیار مؤثر بودهاست. از کامپیوترها همچنین برای محاسبات نظریهٔ اختلال استفاده فراوانی شدهاست که در فیزیک ذرات اهمیت فراوانی دارد و با استفاده از آنها میتوان نتایج تئوریکی را تولید نمود که قابل قیاس با آزمایشهای میباشد.
نظریهٔ اختلال مستقل از زمان این نظریه یکی از مقولههای نظریهٔ اختلال است و مقولهٔ دیگر آن وابسته به زمان میباشد. در نظریهٔ مستقل از زمان هامیلتون اختلالی ایستا میباشد (یعنی هیچگونه وابستگی زمانی ندارد). نظریهٔ وابسته به زمان در مقاله ۱۹۲۶ آروین شرودینگر ارائه گردید که اندکی پس از ارائهٔ نظریات او در مکانیک امواج بود. در این مقاله شرودینگر به آثار اولیهٔ لرد رایلی اشاره نمود که در ارتعاشات هارمونیک لایههای آشفته شده بواسطهٔ ناهماهنگی اندک را بررسی نموده بود. به همین دلیل است که نظریهٔ اختلال رایلی- شرودینگر نیز نامیده میشود.
برای مطالعه مسایل حالتهای مانا، روی سه روش متمرکز میشویم: نظریه اختلال، روش وردشی، و روش WKB. نظریه اختلال بر این فرض استوار است که مسایلی که میخواهیم حل کنیم تنها اندکی با مسئلهای که میتوان آن را بهطور دقیق حل کرد، اختلاف دارند. در مواردی که اختلاف دو مسئله کوچک است، نظریه اختلال برای محاسبه سهم مربوط به این اختلال مناسب است؛ سپس این سهم به عنوان یک تصحیح به انرژی و تابع موجی هامیلتونی که بهطور دقیق قابل حل است، اضافه میشود؛ بنابراین نظریه اختلال، برای بدست آوردن جوابهای تقریبی، به جوابهای دقیق شناخته شده جملاتی اضافه میکند. در مورد سیستمهایی که هامیلتونی آنها را نمیتوان به یک قسمت قابل حل دقیق و یک تصحیح کوچک تقسیم کرد، چه میتوان گفت؟ برای اینگونه سیستمها میتوانیم روش وردشی یا تقریب WKB را به کار گیریم. روش وردشی مخصوصاً در تقریب ویژه مقادیر انرژی حالت زمینه و چند حالت برانگیخته اول سیستم که فقط یک ایده کیفی در مورد شکل تابع موج داریم، مفید است.
روش WKB برای یافتن ویژه مقادیر انرژی و تابع موجهای سیستمهایی که حد کلاسیکی معتبر است، مفید است. بر خلاف نظریه اختلال، روشهای وردشی و WKB نیاز به وجود هامیلتونی بسیار نزدیک که بتوان بهطور دقیق حل کرد، ندارند.
کاربرد روشهای تقریبی برای مطالعه حالتهای مانا شامل پیدا کردن ویژه مقادیر انرژی و ویژه توابع هامیلتونی مستقل از زمان است که جوابهای دقیقی ندارند. بسته به ساختار H، میتوانیم از هر سه روش اشاره شده در بالا برای پیدا کردن جوابهای تقریبی برای این مسئله ویژه مقداری استفاده کنیم.
با هامیلتونی مختل نشده H0، که اغلب فرض میشود هیچ وابستگی به زمان ندارد شروع میکنیم. سطوح انرژی شناخته شده و ویژه حالتهایی دارد، ناشی از معادله شرودینگر مستقل از زمان: