نگاهی به ریاضیات پیشرفته/نظریه اعداد
نظریه اعداد (یا محاسبات یا محاسبات بالاتر در کاربردهای قدیمی تر) شاخه ای از ریاضیات محض است که عمدتاً به مطالعه اعداد صحیح و توابع با مقدار صحیح اختصاص دارد .اعداد صحیح را میتوان به خودی خود یا به عنوان جواب معادلات (در هندسه سیالهای) در نظر گرفت. سوالات حوزهٔ نظریه اعداد اغلب از طریق مطالعه بر روی اشیاء تحلیلی (به عنوان مثال تابع زتای ریمان) بهتر فهمیده میشوند. میتوان اعداد حقیقی را با کمک اعداد گویا مطالعه کرد، به عنوان مثال با تقریب زدن به کمک اعداد گویا (تقریب سیالهای).
اصطلاح قدیمی برای نظریه اعداد، حساب بود. اوایل سده بیستم، عبارت «نظریه اعداد» جایگزین آن شد. (واژه «حساب» نزد عوام به عنوان «محاسبات مقدماتی» پنداشته میشود. همچنین این اصطلاح در منطق ریاضیات به معنای حساب پئانو و در علوم رایانه به معنای حساب ممیز شناور میباشد) استفاده از اصطلاح حساب برای نظریه اعداد در نیمه دوم سده بیستم رواج پیدا کرد، ادعا میشود که ترویج آن تحت تأثیر فرانسویها بودهاست. بهخصوص، اصطلاح حسابی به عنوان یک صفت نسبت به نظریه اعدادی ترجیح داده میشود.
نظریه گاوس
[ویرایش]«ریاضیات ملکهٔ علوم است، و نظریهٔ اعداد ملکه ریاضیات.» نظریه اعداد دانان به مطالعه اعداد اول و همچنین خواص اشیائی که از اعداد ساخته میشوند میپردازند، (به عنوان مثال اعداد گویا) یا تعمیمهایی از اعداد تعریف میکنند (مثل اعداد صحیح جبری).
تاریخچه
[ویرایش]منشأ پیدایش
[ویرایش]طلوع حساب
[ویرایش]قدیمیترین یافتههایی که ماهیت حساب دارند، تکهای از لوح پلیمپتون ۳۲۲ است (لارسا، مزوپتامیا، حدود ۱۸۰۰ پیش از میلاد)، که شامل فهرستی از «سهتاییهای فیثاغورثی» میباشد، یعنی اعداد صحیح ، چنانکه . این سهتاییها، بسیار زیاد و بزرگ اند، به گونه ای که تصور یافته شدنشان به روش بروت فورس (یا اثبات با افنا، با روش افنا اشتباه نشود) برای آن دوره سخت است. این لوح چنین عنوانی دارد: «تاکیلتوم قطری، که از عرض کم شده …»
طرح لوح نشان میدهد که به این لوح به زبان مدرن به این فرمول اشاره کرده:
که بهطور ضمنی در تمارین بابلیان باستان آورده شده. اگر از روش دیگری استفاده میشد، سه تاییها ابتدا ساخته شده و سپس برحسب مرتب میشدند، تا احتمالاً در کاربردهای عملی به عنوان «جدول» مورد استفاده قرار گیرند.
نظریه ها
[ویرایش]نظریه ابتدایی
[ویرایش]در نظریه مقدماتی اعداد، اعداد صحیح را بی استفاده از روشهای بهکار رفته در سایر شاخههای ریاضی بررسی میکنند. مسائل بخش پذیری، الگوریتم اقلیدس برای محاسبه بزرگترین مقسومعلیه مشترک (ب.م. م)، تجزیه اعداد به اعداد اول، جستجوی عدد کامل (به انگلیسی: perfect number) و همنهشتیها در این رده هستند. برخی از یافتههای مهم این رشته قضیه کوچک فرما، قضیه اعداد اول و قضیه اویلر، قضیه باقیمانده چینی و قانون تقابل درجه دوم هستند. خواص توابع ضربی مانند تابع موبیوس و تابع φ اویلر و دنباله اعداد صحیح و فاکتوریلها و اعداد فیبوناچی در همین حوزه قرار دارند.
حل بسیاری از مسائل در نظریه مقدماتی اعداد بر خلاف ظاهر ساده آنها نیازمند کوشش بسیار و بهکار گرفتن روشهای نوین است. چند نمونه:
- حدس گلدباخ در مورد نمایش اعداد زوج به صورت جمع دو عدد اول،
- حدس کاتالان در مورد توانهای متوالی از اعداد صحیح،
- حدس اعداد اول تؤامان در مورد بینهایت بودن زوجهای اعداد اول،
- حدس کولاتز در مورد تکرار ساده،
- حدس اعداد اول مرسن در مورد بینهایت بودن اعداد اول مرسن و …
همچنین ثابت شده که نظریه معادلات دیوفانتی تعمیمناپذیر است (به مسئله دهم هیلبرت مراجعه کنید).
نظریه تحلیلی
[ویرایش]در نظریه تحلیلی اعداد از حسابان و آنالیز مختلط برای بررسی سؤالاتی در مورد اعداد صحیح استفاده میشود. مثالهایی در این مورد قضیه اعداد اول و حدس ریمان هستند. مسئله وارینگ (یعنی نمایش هر عدد صحیح به صورت جمع چند مربع یا مکعب)، حدس اعداد اول تؤامان (یافتن بینهایت عدد اول با اختلاف ۲)، و حدس گلدباخ (نمایش هر عدد زوج بهصورت مجموع دو عدد اول) نیز با روشهای تحلیلی مورد حمله قرار گرفتهاند. اثبات متعالی (ترافرازنده) بودن ثابتهای ریاضی مانند π و e نیز در بخش نظریه تحلیلی اعداد قرار دارند. اگرچه حکمهایی در مورد اعداد ترافرازنده خارج از محدوده مطالعات اعداد صحیح به نظر میآید، در واقع مقادیر ممکن برای چندجملهایها با ضریبهای صحیح مانند e را بررسی میکنند. همچنین اینگونه مسائل با مبحث تقریب دیوفانتین نیز ارتباط نزدیک دارند که موضوع آن این است که چگونه میتوان یک عدد حقیقی داده شده را با یک عدد گویا تقریب زد؟
نظریه جبری
[ویرایش]در نظریه جبری اعداد، مفهوم عدد به اعداد جبری، که همان ریشههای چندجملهایهایی با ضریب گویا هستند، گسترش مییابد. در این حوزه اعدادی مشابه اعداد صحیح با نام اعداد صحیح جبری وجود دارد. در این عرصه لازم نیست ویژگیهای آشنای اعداد صحیح (مانند تجزیه یگانه) برقرار باشد. مزیت روشهای استفاده شده در این رشته (مثل نظریه گالوا، میدان همانستگی، نظریه رده میدان، نمایشهای گروهها و توابع-L) این است که برای این رده از اعداد، نظم را تا حدودی تأمین میکند.
نظریه هندسی
[ویرایش]نظریه هندسی اعداد (که قبلاً به آن هندسه اعداد میگفتند) جنبههایی از هندسه را به نظریه اعداد پیوند میدهد؛ و از قضیه مینکوفسکی در ارتباط با نقاط توری در مجموعههای محدب و تحقیق در مورد چپاندن کرهها در فضای Rn شروع میشود.
نظریه احتمالی
[ویرایش]بسیاری از نظریه اعداد احتمالاتی را می توان به عنوان یک مورد خاص مهم در مطالعه متغیرهایی دانست که تقریباً، اما نه کاملاً مستقل از یکدیگر هستند. به عنوان مثال، رویدادی که یک عدد صحیح تصادفی بین یک و یک میلیون بر دو بخش پذیر باشد و رویدادی که بر سه بخش پذیر باشد تقریباً مستقل هستند، اما نه کاملاً.
گاهی اوقات گفته می شود که ترکیبات احتمالی از این واقعیت استفاده می کند که هر اتفاقی با احتمال بیشتر ازگاهی باید اتفاق بیفتد می توان با عدالت برابر گفت که بسیاری از کاربردهای نظریه اعداد احتمالی به این واقعیت بستگی دارد که هر چیزی که غیرعادی باشد باید نادر باشد. اگر بتوان اشیاء جبری معینی (مثلاً راهحلهای منطقی یا صحیح برای معادلات معین) را در انتها توزیعهای معقول معینی نشان داد، نتیجه میشود که باید تعداد کمی از آنها وجود داشته باشد. این یک گزاره غیر احتمالی بسیار ملموس است که از یک گزاره احتمالی پیروی می کند.
گاهی اوقات، یک رویکرد غیر دقیق و احتمالاتی منجر به تعدادی از الگوریتم های اکتشافی و مشکلات باز می شود، به ویژه حدس کرامر .
نظریه ترکیبیاتی
[ویرایش]نظریه ترکیبیاتی اعداد به مسائلی در نظریه اعداد میپردازد که با روشهای ترکیبیاتی بررسی میشوند. پل اردوش بنیانگذار اصلی این شاخه از نظریه اعداد بود. الگوریتمهای سریع برای امتحان اعداد اول و تجزیه اعداد صحیح در رمزنگاری کاربردهای مهمی دارند.
منابع
[ویرایش]ویکی پدیای فارسی
ویکی پدیای انگلیسی